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PARTICLE DIFFUSION IN OVERLAPPING RESONANCES

K.Y. Ng∗

Fermi National Accelerator Laboratory,†P.O. Box 500, Batavia, IL 60510

ABSTRACT
Longitudinal bunch dilution was studied in the IUCF Cooler Ring with phase mod-
ulation of a higher-order harmonic rf. Diffusion in the presence of overlapping para-
metric resonances has been identified as the dilution mechanism. We found that fast
growth is associated with the rapid particle motion along separatrices of dominant
parametric resonances, slow growth is related to particle diffusion in the chaotic sea,
and saturation occurs when particles are bounded by an invariant torus.

1 Introduction

Longitudinal phase space dilution is important in the operation of synchrotrons, for
example, in the mitigation of microwave instability and minimization of the negative
mass instability when crossing transition. A common procedure is to modulate a
secondary rf system. The process can be described by the Hamiltonian

H =
1

2
νs0δ

2 + νs0

{
[1− cos h1φ]− r

h2
[1− cos(h2φ+ ∆φ)]

}
, (1.1)

where h1 and h2 are the primary and secondary rf harmonics, r is the ratio of the
two rf voltages, νs0 is the synchrotron tune at zero amplitude when the secondary rf
is absent, ∆φ = ∆φ0 + a sin νmθ is the phase difference between the two rf systems
with a the modulation strength and νm the modulation tune. Here, the normal-
ized momentum spread has been chosen as δ = −(h1|η|/νs0)(∆p/p0), so that the

small-amplitude trajectory is a circle if there is only one rf system. Kats 1) studied
the situation of ∆φ0 = 180◦. He converted the equation of motion into the Math-
ieu equation and identified the growth as driven by the 2:1 parametric resonance
and the growth rate by the modulation amplitude a. Balandin, Dyachkov, and
Shaposhnikova 2) also identified the growth as driven by the mk :m resonance, with
m = 1, 2, · · · . However, their derivation is valid only for a small bunch that does
not grow by too much. Cappi, Garoby, and Shaposhnikova3) actually performed an
experiment to verify the theoretical analysis, and found reasonably good agreement.

Here, we like to answer the questions: What is the dilution mechanism, espe-
cially when dilution is big? Is the dilution driven by one resonance or diffusion
resulting from overlapping resonances? What provides the controlled growth?

∗Collaborators: D. Jeon, C.M. Chu, and S.Y. Lee, Department of Physics, Indiana University,
Bloomington, IN 47405.
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Figure 1: Plots of σ2
t as functions of time for 3 situations; vertical scales arbitrary.

2 THE EXPERIMENT

A study was performed on the IUCF Cooler Ring at Indiana, which has elec-
tron cooling. The study was done at 45 MeV with a revolution frequency of
f0 = 1.03168 MHz. Primary rf harmonic was h1 = 1, secondary rf h2 = 9. The
electron-cooling time was roughly 0.4 s. Equilibrium bunch length was σt = 12±1 ns
or σφ = 0.0778± 0.0065 rad. Small-amplitude synchrotron frequency with only the
primary rf was fs0 = νs0f0 ∼ 667 Hz.

An injected bunch was first cooled in the Cooler for 3 s with only the primary rf
turned on. Then, the secondary rf cavity was turned on with a chosen relative phase
∆φ0 and a chosen voltage ratio r (between the 2 rf’s). At the same time, this relative
phase ∆φ0 was modulated with a frequency fm = νmf0 and an amplitude a. The
evolution of the beam profile was measured with a high-bandwidth BPM through
a low-loss high-bandwidth cable. The beam profile was digitized by a digital scope
with 512 channels, each having a resolution of 1 ns.

3 EXPERIMENTAL RESULTS

We plot σ2
t versus time t and expect σ2

t ∝ t when total chaos occurs according to the
Einstein’s relation, since diffusion is a random process. Typically, we see 4 types of
σ2
t evolutions: little or no growth, growth with large amplitude oscillations, initial

fast linear growth followed by linear growth with smaller slope and then saturation,
initial nonlinear growth, which may be a combination of linear growths with larger
and larger slopes. The last three situations are illustrated in Fig. 1.

For a perturbation analysis, we can rewrite the Hamiltonian in Eq. (1.1) as
H = H0 +H1. Here, H0 is in fact the Hamiltonian at zero amplitude modulation,
and gives the correct phase-dependent tune of the unperturbed 2-rf system. If the
modulation amplitude a is small, the tune vs phase plot will tell us about how
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Figure 2: Simulation results of σ2
t vs time for relative phase difference ∆φ0 = 180◦

and 245◦. Other parameters are fm = 1400 Hz, a = 100◦, r = 0.11, and h = 9.

parametric resonances come in. Unfortunately, the modulation amplitude a in this
experiment is of the order of 100◦ or 1.75 rad. Higher-order perturbation will be
important. Higher-order resonances will come into play leading to a chaotic region
in the center of phase space. Therefore, we try to compare experimental results with
simulations instead.

Damping and random excitation are introduced so that the initial rms bunch
width is σφ ∼ 0.078 rad, when only the primary rf is present. The bunch particles are
then tracked for 104 to 105 turns with the secondary rf and phase modulation turned
on. There are 4 variables: modulation tune νm, about 2νs0 to 3νs0, modulation
amplitude a, about 100◦, ratio of rf voltages r, about 0.1 to 0.2, and relative phase
between the 2 rf’s ∆φ0. For a rough comparison, the Cooler intrinsic damping and
diffusive terms are sometimes neglected in the simulation in order to save time. This
is because, the diffusive growth studied here occurs in the first 10 to 20 ms, while
the Cooler intrinsic damping time is ∼ 0.4 s.

Figure 2 shows the simulations when the relative phases are ∆φ0 = 245◦ and
180◦. The other parameters, fm = 1400 Hz, a = 100◦, r = 0.11, fs0 = 667 Hz, are
held fixed. We see that the growth depends very crucially on the relative phase.
There is no growth when ∆φ0 = 180◦; but the growth at 245◦ is big with large-
amplitude oscillations. The Poincaré surfaces of section shown in Fig. 3 tell the
reason. For ∆φ0 = 180◦, the tori near the center are well behaved, therefore the
growth if any is limited. However, when ∆φ0 = 245◦, there is a chaotic region due
to overlapping resonances and the bunch grows to the size of the chaotic region.

To understand the significance of the large-amplitude oscillations in the rms
beam width σ2

t observed in Fig. 2 when ∆φ0 = 245◦, we show in Fig. 4 the evolution
of the phase-space distribution of the bunch during the secondary rf phase modula-
tion for the first 12 consecutive modulation periods. It is evident that the particles
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Figure 3: Poincaré surfaces of section (bottom plots) and the final beam distribu-
tion obtained from numerical simulations (top plots) for relative phase differences
∆φ0=180◦ (left) and 245◦ (right).

Figure 4: Phase space evolution for the bunch dilution in Fig. 2 when ∆φ0 = 245◦.

follow the separatrices of the 2:1 resonance, which is still dominant although highly
broken. The maximum σ2

t corresponds to the time that particles diffuse into the
maximum of the dominant parametric resonance. As particles gradually fill the
chaotic sea of overlapping parametric resonances, the corresponding oscillatory am-
plitude in σ2

t will decrease as well. The final equilibrium bunch length is given by
the phase space area of chaotic region.

Figure 5 shows the situation when fm = 1600 Hz, fs0 = 667 Hz, r = 0.20,
a = 140◦, and ∆φ0 = 280◦. We see that the growth is almost linear initially with
smaller amplitude oscillations and then saturated. This can be understood easily
by the presence of a large chaotic region in the Poincaré section. The successive
modulation-period plots also indicate that the particles follow the dominating 2:1
resonance for much shorter time than the situation in Fig. 4, implying that the
resonance has been much more broken.
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Figure 5: Simulation results for the situation fm = 1600 Hz, fs0 = 667 Hz, r = 0.20,
a = 140◦, ∆φ0 = 280◦. Top left plot is growth of σ2

φ versus turn number.

Figure 6 shows the situation when fm = 2700 Hz, fs0 = 655 Hz, r = 0.233,
a = 67◦, and ∆φ0 = 280◦. The initial growth is nonlinear. This is because although
a large part of the Poincaré section is chaotic, it is embedded with many islands,
which slow the diffusion process. Note also that the total growth is smaller than
that in Fig. 5.

4 CONCLUSIONS

Under some conditions when harmonic phase modulation is applied to a double rf
system, stochastic region develops. The bunch dilution is a result of diffusion in the
stochastic region, and is not driven by a single parametric resonance. How much
the beam diffuses or the final bunch size depends solely on how large the KAM-
torus-bound stochastic region is. If some dominant parametric resonance is not
completely destroyed, the beam will diffuse along the separatrices of this resonance
system giving rise to large-amplitude oscillations and fast diffusion. As the particles
gradually fill the chaotic sea of overlapping parametric resonances, the oscillation in
σ2
t will decrease as well, and the diffusion will slow down.

When the central region of phase space is completely chaotic, σ2
t will increase

linearly according to Einstein’s relation. The growth slows down or saturates once
5
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Figure 6: Simulation results for the situation fm = 2700 Hz, fs0 = 655 Hz, r = 0.233,
a = 67◦, and ∆φ0 = 280◦. Top left plot is growth of σ2

φ versus turn number.

the particles go into an outside less chaotic region.
If the chaotic phase space has partly broken tori embedded inside, it takes time

to cross these tori. σ2
t will grow nonlinearly, slowly first and then faster.

The area and shape of the stochastic region can hardly be obtained analyti-
cally, but can be easily obtained by plotting the Poincaré surface of section. The
experimental results agree reasonably well with simulations. The relative phase ∆φ0

between the two rf systems turns out to be very crucial in deciding the size of the
chaotic region. While ∆φ0 ≈ 0 or π gives the minimal growth, ∆φ0 ≈ 1

2
π or 3

2
π

leads to large growth.
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